
Dihydroartemisinin treatment exhibits antitumor effects in glioma cells through induction of apoptosis
Author(s) -
Chenyu Xu,
Yue Liu,
Limin Xiao,
ChangGui Guo,
Suyue Zheng,
Erming Zeng,
Donghai Li
Publication year - 2017
Publication title -
molecular medicine reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr.2017.7832
Subject(s) - dihydroartemisinin , glioma , apoptosis , cell cycle , bromodeoxyuridine , biology , incubation , cell culture , cell growth , microbiology and biotechnology , cancer research , immunology , biochemistry , artemisinin , genetics , plasmodium falciparum , malaria
The present study aimed to investigate the effect of dihydroartemisinin on the proliferation of chemotherapy‑resistant C6 rat glioma cells. The results revealed that incubation of C6 glioma cells with a range of dihydroartemisinin concentrations for 48 h led to a significant (P<0.02) reduction in the cell number. There was a ‑0.8-fold reduction in the cell count following treatment with 20 µM dihydroartemisinin when compared with the control cultures. Analysis of DNA synthesis using bromodeoxyuridine (BrdU) staining demonstrated a reduction in the BrdU‑labeling index (LI) following treatment with 20 µM dihydroartemisinin. There was a 6‑fold reduction in the BrdU‑LI compared with the control cultures. Incubation of the C6 glioma cells with dihydroartemisinin led to a concentration dependent reduction in the level of cyclic adenosine 3',5'‑monophosphate following 48 h. The percentage of apoptotic cells in the cultures incubated with 20 µM dihydroartemisinin was 54.78% compared with 2.57% in the control cultures. Incubation of the C6 glioma cells with dihydroartemisinin for 48 h led to a reduction in the percentage of cells in G2/M phase with an increase in G0/G1 phase. The control cells exhibited spindle‑shaped morphology and were actively undergoing mitosis following 48 h of culture. The morphological characteristics of the cells treated with dihydroartemisinin were demonstrated to be round with small surface projections. Therefore, treatment of glioma cells with dihydroartemisinin exhibited an antitumor effect by the induction of apoptosis. Therefore, dihydroartemisinin should be evaluated further in the animal models for the treatment of glioma.