z-logo
open-access-imgOpen Access
Gallic acid inhibits the growth of calf pulmonary arterial endothelial cells through cell death and glutathione depletion
Author(s) -
Woo Hyun Park
Publication year - 2017
Publication title -
molecular medicine reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr.2017.7585
Subject(s) - glutathione , programmed cell death , apoptosis , reactive oxygen species , oxidative stress , buthionine sulfoximine , cell growth , biology , gallic acid , cell , intracellular , biochemistry , microbiology and biotechnology , pharmacology , antioxidant , enzyme
Gallic acid (GA) exhibits a number of cellular effects, including apoptosis, which is associated with oxidative stress. The present study investigated the effects of GA on calf pulmonary arterial endothelial cell (CPAEC) growth and death, along with the levels of reactive oxygen species (ROS) and glutathione (GSH). GA treatment inhibited the growth of CPAECs at 24 h, and the half‑maximal inhibitory concentration (IC50) value of GA was ~30 µM. GA treatment also induced cell death, which was accompanied by a loss of mitochondrial membrane potential (ΔѰm). GA treatment in CPAECs resulted in decreased ROS levels, including O2•‑, whereas the number of GSH‑depleted cells increased. Neither a pan‑caspase inhibitor (benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone) nor buthionine sulfoximine treatment affected GA‑induced cell growth inhibition, cell death, ROS and GSH levels in CPAECs, whereas co‑treatment with N‑acetyl‑cysteine (NAC) resulted in enhanced cell growth inhibition, cell death and ΔѰm loss in these cells. Although NAC treatment did not significantly influence ROS levels in GA‑treated CPAECs, it significantly enhanced GSH depletion in these cells. In conclusion, GA inhibited the growth of CPAECs via cell death, which was associated with GSH depletion rather than alterations to ROS levels.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here