z-logo
open-access-imgOpen Access
Stromal cell-derived factor 1 protects human periodontal ligament stem cells against hydrogen peroxide-induced apoptosis
Author(s) -
Yi Feng,
Xiaohui Fu,
Xin-Tian Lou,
Bojie Fu
Publication year - 2017
Publication title -
molecular medicine reports
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr.2017.7192
Subject(s) - periodontal ligament stem cells , microbiology and biotechnology , mapk/erk pathway , viability assay , stem cell , stromal cell , biology , protein kinase a , progenitor cell , signal transduction , apoptosis , chemistry , kinase , cancer research , biochemistry , alkaline phosphatase , enzyme
Periodontal ligament stem cells (PDLSCs) are considered a promising cell source for dental tissue regeneration. Stromal cell-derived factor 1 [SDF‑1, also known as chemokine (C‑X‑C motif) ligand 12] is regarded as a critical cytokine involved in stem/progenitor cell chemotaxis and homing during tissue regeneration. The present study described a previously unsuspected role for SDF‑1 in the protection of PDLSCs against oxidative stress‑induced apoptosis. In the present study, apoptosis was induced by exposure of PDLSCs to various concentrations of H2O2 for 12 h, following which cell viability was assessed, and cleaved caspase‑3 and ‑9 expression levels were evaluated. To investigate the potential mechanism underlying this protection, the protein expression levels of total and phosphorylated extracellular signal‑regulated kinase (ERK), a key protein of the mitogen‑activated protein kinase (MAPK) signaling pathway, were examined. The results of the present study revealed that SDF‑1 pretreatment increased cell viability following H2O2 administration, and downregulated protein expression levels of activated caspase‑3 and ‑9. Furthermore, treatment with SDF‑1 increased the phosphorylation of ERK. The protective effect of SDF‑1 was partially inhibited by treatment with PD98059, a MAPK/ERK inhibitor, which decreased cell viability. The results of the present study suggested that SDF‑1 treatment is a potential strategy to improve the survival of PDLSCs, which may be beneficial for dental tissue regeneration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here