
miR-200b inhibits migration and invasion in non-small cell lung cancer cells via targeting FSCN1
Author(s) -
Peng Xiao,
Wenliang Li,
Hui Zhou
Publication year - 2016
Publication title -
molecular medicine reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr.2016.5421
Subject(s) - cell migration , cell cycle , cancer research , microrna , metastasis , biology , oncogene , lung cancer , a549 cell , cell , cell culture , apoptosis , gentamicin protection assay , cancer , oncology , medicine , gene , biochemistry , genetics
Distant metastasis of non-small cell lung cancer (NSCLC) leads to high postoperative recurrence and low long‑term survival rates. Deregulation of microRNA (miR)-200b has been demonstrated to be associated with NSCLC metastasis. However, the underlying molecular mechanism of miR‑200b in mediating NSCLC cell migration and invasion remains to be fully elucidated. In the current study, reverse transcription‑quantitative polymerase chain reaction data indicated that miR‑200b was significantly downregulated in several NSCLC cell lines, including A549, L78, H1229, H358 and H1650, compared with a normal human lung epithelial cell line, BEAS‑2B. Overexpression of miR‑200b significantly inhibited NSCLC cell migration and invasion. Bioinformatics analysis and a luciferase reporter assay were additionally conducted, which identified fascin actin‑bundling protein 1 (FSCN1) as a novel target of miR‑200b. In addition, miR‑200b negatively mediated the protein expression of FSCN1 in NSCLC H1229 cells. siRNA‑mediated FSCN1 inhibition also significantly inhibited the migration and invasion of H1229 cells. In addition, overexpression of FSCN1 effectively reversed the suppressive effect of miR‑200b overexpression on NSCLC cell migration and invasion. Accordingly, it is suggested that miR‑200b is able to inhibit the migration and invasion of NSCLC cells, partly at least, via targeting FSCN1. The current study provides novel insight into miR‑200 regulation in NSCLC metastasis.