z-logo
open-access-imgOpen Access
Inhibition of ERK1/2 improves lipid balance in rat macrophages via ABC A1/G1 and CD36
Author(s) -
Xiehua Xue,
FengFei Shi,
Tong Chen,
Wei Wei,
XiaoMao Zhou,
Lidian Chen
Publication year - 2015
Publication title -
molecular medicine reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr.2015.4697
Subject(s) - cd36 , abca1 , abcg1 , foam cell , oil red o , scavenger receptor , lipid metabolism , downregulation and upregulation , extracellular , lipid droplet , biology , kinase , chemistry , biochemistry , lipoprotein , microbiology and biotechnology , cholesterol , receptor , adipose tissue , transporter , adipogenesis , gene
ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), and macrophage scavenger receptor, cluster of differentiation (CD)36, function as key mediators of cholesterol efflux and influx from macrophages. In addition, they are associated with foam cell formation and the development of atherosclerosis (AS). The aim of the present study was to investigate the effects of extracellular signal-regulated kinases 1/2 (ERK1/2) inhibition on lipid balance in oxidized-low-density lipoprotein (Ox-LDL)-stimulated rat macrophages, and to examine the role of ERK1/2 inhibitors in AS. Rat peritoneal macrophages were treated with Ox-LDL alone or in combination with an ERK1/2 inhibitor, U0126, and untreated cells served as controls. Ox-LDL-induced lipid accumulation was detected by DiI fluorescence and oil red O staining. In addition, the mRNA and protein expression levels of ABCA1, ABCG1 and CD36 were determined using polymerase chain reaction and western blotting, respectively. Treatment with Ox-LDL significantly increased lipid accumulation and upregulated the mRNA and protein expression levels of ABCA1, ABCG1 and CD36 in macrophages. The addition of U0126 resulted in a marked reduction of lipid deposition, upregulation of ABCA1/G1 expression and suppression of CD36 expression in Ox-LDL-stimulated macrophages. The results of the present study indicated a novel association between ERK1/2 signaling and lipid metabolism, thus suggesting that inhibition of ERK1/2 may be considered a promising therapeutic strategy against AS.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here