z-logo
open-access-imgOpen Access
MicroRNA-10b suppresses the migration and invasion of chondrosarcoma cells by targeting brain-derived neurotrophic factor
Author(s) -
Abudunaibi Aili,
Yong Chen,
Hongqi Zhang
Publication year - 2015
Publication title -
molecular medicine reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr.2015.4506
Subject(s) - chondrosarcoma , cancer research , microrna , biology , histone deacetylase inhibitor , cell cycle , brain derived neurotrophic factor , downregulation and upregulation , microbiology and biotechnology , demethylating agent , oncogene , neurotrophic factors , cell culture , histone deacetylase , cell , chemistry , dna methylation , pathology , histone , gene expression , medicine , genetics , receptor , gene
MicroRNAs (miRs) can lead to mRNA degradation or inhibit protein translation through directly binding to the 3'‑untranslational region (UTR) of their target mRNAs. Deregulation of miR‑10b has been reported to be associated with chondrosarcoma. However, the role of miR‑10b in chondrosarcoma cell migration and invasion, as well as the underlying mechanisms, has not been investigated. In the present study, it was demonstrated that miR‑10b was notably downregulated in the JJ012 and SW1353 chondrosarcoma cell lines compared with the TC28a2 normal chondrocyte line. Treatment with DNA demethylating agent 5‑aza‑2'‑deoxycytidine and histone deacetylase inhibitor 4‑phenylbutyric acid, or transfection with miR‑10b mimics promoted the expression of miR‑10b, which further suppressed the migratory and invasive capacities of JJ012 chondrosarcoma cells. Moreover, brain‑derived neurotrophic factor (BDNF) was identified as a novel target of miR‑10b, and its protein expression level was negatively regulated by miR‑10b in JJ012 cells. Furthermore, overexpression of BDNF reversed the inhibitory effect of miR‑10b upregulation on the migration and invasion of JJ012 cells. In addition, the data suggest that matrix metalloproteinase 1 (MMP1) may be involved in the miR‑10b/BDNF‑mediated chondrosarcoma cell migration and invasion in JJ012 cells. In conclusion, these findings suggest that miR‑10b/BDNF may serve as a potential therapeutic target for chondrosarcoma.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here