
c-FLIPp43 induces activation of the nuclear factor-κB signaling pathway in a dose-dependent manner in the A375 melanoma cell line
Author(s) -
Yujue Wang,
Yating Tu,
Jiejie Lu,
Juan Tao,
Yan Li
Publication year - 2014
Publication title -
molecular medicine reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.727
H-Index - 56
eISSN - 1791-3004
pISSN - 1791-2997
DOI - 10.3892/mmr.2014.2364
Subject(s) - transfection , western blot , microbiology and biotechnology , cell culture , biology , cell cycle , signal transduction , expression vector , oncogene , cell , gene , recombinant dna , genetics
In order to investigate the role of c‑FLIPp43 in the regulation of the nuclear factor (NF)‑κB signaling pathway in melanoma cell lines, a eukaryotic expression vector for c‑FLIPp43 was constructed with the pCMV‑Tag2B plasmid. The monoclonal A375 cells with stable expression of c‑FLIPp43 were obtained by G418 selection and were identified with western blot analysis. The protein level of NF‑κBp65 in the A375 cell line with stable expression of c‑FLIPp43 was examined by western blot analysis. The translocation of NF‑κBp65 was examined using immunofluorescence. The A375 cell lines were transfected with the pCMV‑Tag2B‑cFLIPp43 vector at different doses and the activation of the NF‑κB signaling pathway was examined by the dual‑luciferase reporter assay system. The stable expression of c‑FLIPp43 in the A375 cell lines transfected with the pCMV‑Tag2B‑cFLIPp43 vector increased the protein level of NF‑κBp65 compared with in the A375 cell lines transfected with the empty vector. Transfection of the cells using the pCMV‑Tag2B‑cFLIPp43 vector increased the amount of NF‑κBp65 in the nucleus in a dose‑dependent manner. In conclusion, the transfection of the c‑FLIPp43 expression vector induces the protein expression of NF‑κBp65 and promotes the activation of the NF‑κB signaling pathway in the A375 melanoma cell line.