
Involvement of SAMHD1 in dNTP homeostasis and the maintenance of genomic integrity and oncotherapy (Review)
Author(s) -
Zhou Zhang,
Lianfang Zheng,
Yu Yang,
Jinying Wu,
Fan Yang,
Yingxi Xu,
Qiqiang Guo,
Xuan Wu,
Sunrun Cao,
Liu Cao,
Xiaoyu Song
Publication year - 2020
Publication title -
international journal of oncology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.405
H-Index - 122
ISSN - 1019-6439
DOI - 10.3892/ijo.2020.4988
Subject(s) - samhd1 , biology , reverse transcriptase , carcinogenesis , dna repair , genetics , dna , microbiology and biotechnology , gene , rna
Sterile alpha motif and histidine/aspartic acid domain‑containing protein 1 (SAMHD1), the only deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, plays a crucial role in regulating the dynamic balance and ratio of cellular dNTP pools. Furthermore, SAMHD1 has been reported to be involved in the pathological process of several diseases. Homozygous SAMHD1 mutations have been identified in immune system disorders, such as autoimmune disease Aicardi‑Goutières syndrome (AGS), whose primary pathogenesis is associated with the abnormal accumulation and disproportion of dNTPs. SAMHD1 is also considered to be an intrinsic virus‑restriction factor by suppressing the viral infection process, including reverse transcription, replication, packaging and transmission. In addition, SAMHD1 has been shown to promote genome integrity during homologous recombination following DNA damage, thus being considered a promising candidate for oncotherapy applications. The present review summarizes the molecular mechanisms of SAMHD1 regarding the regulation of dNTP homeostasis and DNA damage response. Additionally, its potential effects on tumorigenesis and oncotherapy are reported.