z-logo
open-access-imgOpen Access
Y-box binding protein-1 and STAT3 independently regulate ATP-binding cassette transporters in the chemoresistance of gastric cancer cells
Author(s) -
Pei Jou Chua,
Jia Yin Lim,
T.F. Guo,
Puja Khanna,
Qidong Hu,
Boon Huat Bay,
Gyeong Hun Baeg
Publication year - 2018
Publication title -
international journal of oncology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.405
H-Index - 122
ISSN - 1019-6439
DOI - 10.3892/ijo.2018.4557
Subject(s) - gene knockdown , stat3 , biology , cancer cell , viability assay , cancer research , stat protein , atp binding cassette transporter , janus kinase , cancer , signal transduction , cell , apoptosis , microbiology and biotechnology , transporter , biochemistry , gene , genetics
Y-box binding protein-1 (YB-1) facilitates cancer chemoresistance through the upregulation of ATP-binding cassette (ABC) transporters associated with multidrug resistance, which is one of the primary obstacles in cancer treatment. Since aberrant Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling is also implicated in chemoresistance in numerous human malignancies, the interaction between YB-1 and JAK/STAT signaling was explored underlying the chemoresistance of NUGC3 gastric cancer cells. It was demonstrated that YB-1 translocated into the nuclei of NUGC3 cells exposed to doxorubicin hydrochloride, suggesting its important role in chemoresistance. Consistently, knockdown of YB-1 significantly decreased the chemoresistance of cells to doxorubicin hydrochloride and epirubicin hydrochloride, as evidenced by a decrease in cell viability. Notably, JAK inhibitor AG490 treatment further decreased the cell viability caused by YB-1 inhibition and doxorubicin hydrochloride. It was also observed that YB-1 transcriptionally regulated the ABCC3 transporter, whereas STAT3 modulated ABCC2 transporter levels. These findings suggest that YB-1 and STAT3 act together to facilitate chemoresistance via modulating the expression of different ABC transporters in NUGC3 cells. Notably, siYB-1 did not exhibit any significant effect on STAT3 expression. Similarly, siSTAT3 failed to alter YB-1 expression, suggesting that the two may not regulate each other in a mutual manner. However, double knockdown of YB-1 and STAT3 led to a synergistic inhibition of cell invasion in NUGC3 cells. Nonetheless, the combined treatment of YB-1 antagonists with STAT3 inhibitors may serve as an effective therapy in gastric cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here