
Starvation mediates pancreatic cancer cell sensitivity to ferroptosis via ERK1/2, JNK and changes in the cell mesenchymal state
Author(s) -
Eglė Žalytė,
Jonas Cicenas
Publication year - 2022
Publication title -
international journal of molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.048
H-Index - 90
eISSN - 1791-244X
pISSN - 1107-3756
DOI - 10.3892/ijmm.2022.5140
Subject(s) - pancreatic cancer , viability assay , cancer cell , cancer research , cell , biology , epithelial–mesenchymal transition , mesenchymal stem cell , flow cytometry , cell culture , microbiology and biotechnology , apoptosis , cancer , biochemistry , metastasis , genetics
Pancreatic cancer is a highly metastatic and therapy‑resistant disease. In the present study, the prospects of a novel approach to kill pancreatic cancer cells were examined: Starvation combined with ferroptosis induction. Established pancreatic cancer cell lines (Miapaca2, Panc‑1, Su.86.86 and T3M4), as well as a unique cell line, Capan‑26, which was originally derived in the authors' laboratory, were used. Cells were deprived from growth factors, amino acids and pseudo‑starved using treatment with mTOR inhibitors; erastin was used to induce ferroptosis. Cell viability and lipid peroxidation measurements using flow cytometry revealed that the starved pancreatic cancer cells reacted differently to ferroptosis induction: The Panc‑1, Su.86.86 and T3M4 cells gained sensitivity, while the Miapaca2 cells acquired resistance. Fluorescence microscopy revealed that ERK1/2 translocated to the nucleus of the starved pancreatic cancer cells. Moreover, ERK1/2 pharmacological inhibition with SCH772984 prevented erastin‑induced ferroptosis in the starved Panc‑1, Su.86.86 and T3M4 cells. Confocal microscopy also indicated JNK activation. However, the inhibition of this kinase revealed its unexpected role in oxidative stress management: Treatment with the JNK inhibitor, SP600125, increased the viability of pseudo‑starved cells following erastin treatment. In addition, the FBS‑starved Miapaca2 and Capan‑26 cells transitioned between epithelial and mesenchymal cell states. The results were further confirmed using wound healing assays, western blot analysis and microscopic analysis of epithelial‑to‑mesenchymal transition (EMT) markers. Mesenchymal properties were associated with a higher sensitivity to erastin, whereas epithelial‑like cells were more resistant. Finally, it was demonstrated that compounds targeting EMT‑related signaling pathways increased cell sensitivity to erastin. On the whole, these results confirm that in starved pancreatic cancer cells, ERK1/2 and JNK signaling, as well as switching between epithelial and mesenchymal states mediates sensitivity to erastin and reveal novel therapeutic prospects of the combination of starvation with ferroptosis induction.