z-logo
open-access-imgOpen Access
miR‑199a decreases Neuritin expression involved in the development of Alzheimer's disease in APP/PS1 mice
Author(s) -
Dandan Song,
Guoxiang Li,
Hong Yu,
Pan Zhang,
Jingling Zhu,
Lei Yang,
Jin Huang
Publication year - 2020
Publication title -
international journal of molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.048
H-Index - 90
eISSN - 1791-244X
pISSN - 1107-3756
DOI - 10.3892/ijmm.2020.4602
Subject(s) - microrna , downregulation and upregulation , biology , oncogene , microbiology and biotechnology , hippocampus , neuroscience , gene , genetics , cell cycle
Neuritin plays an important role in neural development and plasticity. A recent study demonstrated that increasing Neuritin levels attenuated synaptic damage in mice with Alzheimer's disease (AD), which exhibit a decreased Neuritin expression. However, it remains unclear as to whether Neuritin expression is regulated by microRNAs (miRNAs or miRs) in AD. In the present study, it was found that miR‑199a decreased Neuritin expression and was therefore involved in the development of AD. Subsequently, differentially expressed miRNAs in AD from datasets and the literature were recruited, and those that could bind Neuritin were predicted using bioinformatics analysis. The present study then focused on the candidate miRNAs that were highly associated with Neuritin and were upregulated in AD. The expression patterns of the candidate miRNAs and Neuritin in the hippocampus and cortex of APP/PS1 (AD model) mice at different stages were then detected and analyzed. It was found that miR‑199a expression was significantly increased in the early stages of AD and was negatively associated with Neuritin expression. Furthermore, it was revealed that the decreased Neuritin expression was due to the direct targeting of the Neuritin 3'‑UTR by miR‑199a. Finally, the association between the spatial memory capacity of APP/PS1 mice and the changes in miR‑199a and Neuritin expression protein was investigated. On the whole, the data of the present study suggest that miR‑199a is involved in the development of AD by regulating Neuritin expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here