z-logo
open-access-imgOpen Access
RUNX3 plays an important role in mediating the BMP9-induced osteogenic differentiation of mesenchymal stem cells
Author(s) -
Yufeng Wang,
Qingxiang Feng,
Caixia Ji,
Xiaohua Liu,
Li Li,
Jinyong Luo
Publication year - 2017
Publication title -
international journal of molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.048
H-Index - 90
eISSN - 1791-244X
pISSN - 1107-3756
DOI - 10.3892/ijmm.2017.3155
Subject(s) - gene knockdown , runx2 , mesenchymal stem cell , microbiology and biotechnology , osteoblast , biology , downregulation and upregulation , transcription factor , cellular differentiation , alkaline phosphatase , cancer research , chemistry , apoptosis , in vitro , gene , biochemistry , enzyme
Although bone morphogenetic protein 9 (BMP9) is highly capable of promoting the osteogenic differentiation of mesenchymal stem cells (MSCs) both in vitro and in vivo, the molecular mechanisms involved remain to be fully elucidated. Runt-related transcription factor (RUNX)3 is an essential regulator of osteoblast/chondrocyte maturation. However, the exact role of RUNX3 in BMP9 osteoinductive activity is unknown. In this study, we sought to investigate the functional role of RUNX3 in the BMP9-induced osteogenic differentiation of MSCs. We found that BMP9 upregulated the endogenous expression of RUNX3 in MSCs. The overexpression or/and knockdown of RUNX3 both increased the levels of alkaline phosphatase (ALP) a marker of BMP9-induced early osteogenic differentiation. Nevertheless, matrix mineralization, a marker of BMP9-induced late osteogenic differentiation was enhanced by the overexpression of RUNX3, whereas it was inhibited by the knockdown of RUNX3. The BMP9-induced expression of osteogenic pivotal transcription factors [inhibitor of differentiation (Id)3, distal-less homeobox 5 (DLX5) and RUNX2)] was further increased by the overexpression of RUNX3; however, it was reduced by the knockdown of RUNX3. However, the expression levels of Id1 and Id2 were both enhanced by the overexpression or/and knockdown of RUNX3. The BMP9-induced phosphorylation of Smad1/5/8 was increased with the overexpression of RUNX3, and yet was decreased with the knockdown of RUNX3. Collectively, our findings suggest that RUNX3 is an essential modulator of the BMP9-induced osteoblast lineage differentiation of MSCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here