
High-content screening identifies inhibitors of the nuclear translocation of ATF6
Author(s) -
Chunlei Liu,
Xin Li,
Lu Gan,
YunYun He,
Lili Wang,
Kunlun He
Publication year - 2015
Publication title -
international journal of molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.048
H-Index - 90
eISSN - 1791-244X
pISSN - 1107-3756
DOI - 10.3892/ijmm.2015.2442
Subject(s) - atf6 , western blot , transcription factor , viability assay , cytoplasm , endoplasmic reticulum , microbiology and biotechnology , biology , luciferase , high content screening , transmembrane domain , cell , chemistry , unfolded protein response , biochemistry , gene , transfection
Activating transcription factor 6 (ATF6) is a transmembrane protein that consists of a cytoplasmic domain and an endoplasmic reticulum (ER) luminal domain. As unfolded protein levels arise in the ER, the ER cytoplasmic domain of ATF6 moves to the nucleus, where it activates the transcription of a range of genes, including those involved in apoptosis. As ATF6 only becomes functional once it has moved to the nucleus, compounds that inhibit its re-localization are of therapeutic interest. The aim of the present study was to rapidly and accurately identify such compounds using a novel image‑based, high‑content screening (HCS) technique. The results from the HCS analysis were then confirmed by luciferase reporter assays, western blot analysis and the measurement of cell viability. We found that HCS identified compounds which inhibited ATF6 nuclear translocation with high specificity, as confirmed by the luciferase reporter assay and western blot analysis. Moreover, we demonstrated that 3 of the 80 identified compounds impaired ATF6-mediated induced cell death. The data from this study support the theory that HCS is a novel, high throughput method which can be used for accurate and rapid compound screening.