z-logo
open-access-imgOpen Access
Epigallocatechin-3-gallate inhibits TF and TNF-α expression induced by the anti-β2GPI/β2GPI complex in human THP-1 cells
Author(s) -
Ting Wang,
Hong Zhou,
Hong Xie,
Ming Yuan,
Ya Xu,
Jingjing Liu,
Xiaolei Zhang
Publication year - 2014
Publication title -
international journal of molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.048
H-Index - 90
eISSN - 1791-244X
pISSN - 1107-3756
DOI - 10.3892/ijmm.2014.1635
Subject(s) - tissue factor , monocytic leukemia , thp1 cell line , p38 mitogen activated protein kinases , tumor necrosis factor alpha , microbiology and biotechnology , tlr4 , cytokine , biology , kinase , protein kinase a , signal transduction , cell culture , immunology , medicine , coagulation , genetics
Epigallocatechin-3-gallate (EGCG) is the major polyphenolic component of green tea. The aim of the current study was to investigate the inhibitory effects of EGCG on anti-β2-glycoprotein I (β2GPI)/β2GPI-induced tissue factor (TF) and tumor necrosis factor-α (TNF-α) expression in the human acute monocytic leukemia cell line, THP-1, as well as the underlying mechanisms. Human THP-1 cells cultured in vitro were treated with lipopolysaccharide (LPS, 500 ng/ml) or with the anti-β2GPI (10 µg/ml)/β2GPI (100 µg/ml) complex following pre-treatment with or without EGCG (0-50 µg/ml). The expression levels of TF, TNF-α and Toll-like receptor 4 (TLR4) were measured, and the activation of mitogen-activated protein kinases (MAPKs) including p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), and the nuclear factor-κB (NF-κB) signaling pathway was determined by western blot analysis. The results revealed that the anti-β2GPI/β2GPI complex activated the THP-1 cells, resulting in the enhanced expression of the coagulation cytokine, TF, as well as that of the pro-inflammatory cytokine, TNF-α; these levels were almost comparable to those induced by LPS. Pre-treatment with EGCG decreased the TF and TNF-α levels in the THP-1 cells treated with the anti-β2GPI/β2GPI complex in a dose-dependent manner and counteracted the upregulation of TLR4 expression (mRNA and protein) which was induced by the anti-β2GPI/β2GPI complex or LPS. Furthermore, EGCG suppressed the phosphorylation of p38, ERK1/2 and JNK and blocked the activation of the NF-κB signaling pathway induced by the anti-β2GPI/β2GPI complex or LPS. In conclusion, our results indicate that EGCG decreases the anti-β2GPI/β2GPI-induced TF and TNF-α expression in THP-1 cells possibly through the inhibition of the intracellular signal transduction pathway of TLRs-MAPKs-NF-κB axis and may serve as a preventive and therapeutic agent for antiphospholipid syndrome (APS).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here