
Inhibition of acetyl‑CoA carboxylase by PP‑7a exerts beneficial effects on metabolic dysregulation in a mouse model of diet‑induced obesity
Author(s) -
Tianya Liu,
Lingshan Gou,
Shirong Yan,
Tonghui Huang
Publication year - 2020
Publication title -
experimental and therapeutic medicine
Language(s) - English
Resource type - Journals
eISSN - 1792-1015
pISSN - 1792-0981
DOI - 10.3892/etm.2020.8700
Subject(s) - endocrinology , medicine , fatty liver , triglyceride , acetyl coa carboxylase , fatty acid synthase , lipid metabolism , diet induced obese , fatty acid , insulin resistance , weight gain , type 2 diabetes , obesity , diabetes mellitus , chemistry , cholesterol , pharmacology , pyruvate carboxylase , biochemistry , disease , body weight , enzyme
Acetyl-coenzyme A carboxylase (ACC) is a critical regulator of fatty acid metabolism and represents a promising therapeutic target for metabolic diseases, including obesity, type 2 diabetes and non-alcoholic fatty liver disease. Recently, a novel ACC inhibitor, PP-7a, was developed by our group by utilizing a structure-based drug design. In the present study, the pharmacological effects of PP-7a on the metabolic dysregulation in mice with high-fat diet (HFD)-induced obesity and the underlying mechanisms were investigated. The inhibitory effect on ACC activities was confirmed by assessing the level of malonyl-CoA, a product synthesized by the catalyzation of ACC. Following 16 weeks of being fed an HFD, the mice were administered PP-7a (15, 45 or 75 mg/kg) for 4 weeks. The effects of PP-7a on weight gain, glucose intolerance, hepatic lipid accumulation and the increase of serum triglyceride (TG), total cholesterol (TC) and free fatty acids (FFA) in mice were assessed. CP-640186 was used as a positive control drug and administered in the same manner as PP-7a. Chronic administration of PP-7a lowered the malonyl-CoA levels in liver and heart tissues of mice in the HFD group. In addition, HFD-induced weight gain and glucose intolerance were improved by PP-7a treatment in the mice fed the HFD. Furthermore, PP-7a suppressed hepatic lipid accumulation and the increase in TG, TC and FFA levels. Taken together, these results suggest that ACC inhibition by PP-7a may have a beneficial effect on metabolic dysregulation in obese mice.