z-logo
open-access-imgOpen Access
Rhein‑8‑O‑β‑D‑glucopyranoside inhibited high glucose‑induced apoptosis of human mesangial cells by regulating the lincRNA ANRIL/let‑7a/TGF‑β1/Smad signaling pathway
Author(s) -
Lansheng Zhang,
Jing Li,
Jiaping Liu
Publication year - 2020
Publication title -
experimental and therapeutic medicine
Language(s) - English
Resource type - Journals
eISSN - 1792-1015
pISSN - 1792-0981
DOI - 10.3892/etm.2020.8544
Subject(s) - smad , apoptosis , signal transduction , transforming growth factor , flow cytometry , cancer research , chemistry , microbiology and biotechnology , biology , biochemistry
Diabetic nephropathy is one of most frequent complications of diabetes, and is the major cause of end-stage disease in diabetic patients. The present study investigated the roles and mechanisms of Rhein-8-O-β-D-glucopyranoside (Rg) protecting human mesangial cells (HMCs) from high glucose (HG)-induced apoptosis. Using a Cell Counting Kit-8 assay the proliferation of HMCs was analyzed, and flow cytometry was applied to detect apoptosis. The apoptosis-associated protein Bcl-2, caspase-3 and members of the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway were analyzed using a western blotting assay. HG significantly induced HMC apoptosis, and Rg markedly attenuated the HG-induced apoptosis. HG decreased the Bcl-2 expression and increased the caspase-3 expression, and Rg treatment recovered the expressions of Bcl-2 and caspase-3 affected by HG. The underlying mechanisms were further analyzed, and it was demonstrated that HG significantly upregulated the long intervening non-coding RNA (lincRNA) ANRIL expression level, downregulated let-7a expression and activated the TGF-β1/Smad signaling pathway; Rg treatment recovered the expressions of lincRNA ANRIL and let-7a, and inhibited the TGF-β1/Smad signaling pathway in the condition of HG. In conclusion, the present results suggested that Rg attenuated HG-induced apoptosis of HMCs by regulating the lincRNA ANRIL/let-7a/TGF-β1/Smad signaling pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom