
Matrine suppresses breast cancer metastasis by targeting ITGB1 and inhibiting epithelial‑to‑mesenchymal transition
Author(s) -
Lili Ren,
Wenju Mo,
Linling Wang,
Xiaojia Wang
Publication year - 2019
Publication title -
experimental and therapeutic medicine
Language(s) - English
Resource type - Journals
eISSN - 1792-1015
pISSN - 1792-0981
DOI - 10.3892/etm.2019.8207
Subject(s) - epithelial–mesenchymal transition , metastasis , cancer research , breast cancer , matrine , oncogene , cancer , autophagy , apoptosis , annexin , cell migration , molecular medicine , mcf 7 , cell growth , medicine , cell , cell cycle , biology , human breast , biochemistry , genetics , psychiatry
Metastasis can be a fatal step in breast cancer progression. Effective therapies are urgently required due to the limited therapeutic options clinically available. The aim of the present study was to investigate the effect of matrine (MAT), a traditional Chinese medicine, on the proliferation and migration of human breast cancer cells and its underlying mechanisms of action. The proliferation of MDA-MB-231 cells was inhibited and apoptosis was induced following treatment with MAT, as determined by MTT and Annexin-V-FITC/PI assays. Western blot analysis was used to detect the LC-3II/I levels and the results suggested that tumor autophagy is involved in the anti-tumor activity of MAT. To the best of our knowledge, this is the first study to report that MAT inhibits MDA-MB-231 and MCF-7 cell motility, potentially by targeting integrin β1 (ITGB1) and epithelial-to-mesenchymal transition (EMT), as indicated by Transwell ® and siRNA interference assays. In conclusion, ITGB1 and EMT are involved in MAT-induced breast carcinoma cell death and the inhibition of metastasis. This may lead to the development of novel compounds for the treatment of breast cancer metastasis.