z-logo
open-access-imgOpen Access
Adropin reduces hypoxia/reoxygenation‑induced myocardial injury via the reperfusion injury salvage kinase pathway
Author(s) -
Lingzhen Wu,
Jun Fang,
Xin Yuan,
Chengliang Xiong,
Lianglong Chen
Publication year - 2019
Publication title -
experimental and therapeutic medicine
Language(s) - English
Resource type - Journals
eISSN - 1792-1015
pISSN - 1792-0981
DOI - 10.3892/etm.2019.7937
Subject(s) - hypoxia (environmental) , molecular medicine , oncogene , apoptosis , reperfusion injury , cell cycle , myocardial reperfusion injury , medicine , kinase , cardiology , chemistry , microbiology and biotechnology , biology , ischemia , oxygen , biochemistry , organic chemistry
Adropin is a secreted polypeptide that has been demonstrated to serve an important role in protecting the vascular endothelium. Pharmacological activation of pro-survival kinases, such as PI3K-Akt and ERK1/2, are involved in the reperfusion injury salvage kinase (RISK) pathway. In the present study, the effects of adropin in cardiomyocyte injury induced by simulated ischemia/reperfusion (SI/R) were assessed. Additionally, the current study also assessed the mechanisms that govern SI/R in a H9c2 cardiomyoblast cell model. Cell viability was measured using an MTT assay. Cell injury was assessed using creatine kinase MB measurements. Apoptosis was assessed using flow cytometry and caspase-3 activity. The inflammatory response was measured using tumor necrosis factor α and interleukin-10 expression. Oxidative stress was assessed using malondialdehyde and superoxide dismutase. The expression levels of Akt, ERK1/2, glycogen synthase kinase 3β (GSK3β), Bcl-2 and Bax were determined using western blot analysis. The results of the current study revealed that moderate-dose adropin increased cell viability, reduced early apoptosis and caspase-3 activity, promoted Bcl-2 expression, inhibited Bax and increased the Bcl-2/Bax ratio. Adropin significantly increased the phosphorylation of Akt, ERK1/2 and GSK3β, whereas inhibitors of PI3K and ERK1/2, respectively, LY294002 and PD98059, abolished the cardioprotective role of adropin. Furthermore, no significant difference was observed in phosphorylated-STAT3/total-STAT3 expression between the adropin and SI/R groups and Janus kinase 2 inhibitor AG490 did not significantly inhibit the protective role of adropin. These results indicate that adropin exerts a protective effect against SI/R injury through the RISK pathway instead of the survivor activating factor enhancement pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here