
(-)-Epigallocatechin‑3‑gallate inhibition of Epstein‑Barr virus spontaneous lytic infection involves downregulation of latent membrane protein 1
Author(s) -
Sufang Liu,
Hongde Li,
Min Tang,
Yang Cao
Publication year - 2017
Publication title -
experimental and therapeutic medicine
Language(s) - English
Resource type - Journals
eISSN - 1792-1015
pISSN - 1792-0981
DOI - 10.3892/etm.2017.5495
Subject(s) - bzlf1 , lytic cycle , epstein–barr virus , protein kinase a , biology , cancer research , protein kinase b , downregulation and upregulation , microbiology and biotechnology , nasopharyngeal carcinoma , virology , kinase , signal transduction , chemistry , virus , herpesviridae , medicine , biochemistry , gene , viral disease , radiation therapy
The Epstein-Barr virus (EBV) lytic cycle contributes to the development of EBV-associated diseases. EBV-encoded latent membrane protein 1 (LMP1) is key to EBV lytic replication, and our previous work indicated that epigallocatechin-3-gallate (EGCG) inhibited constitutive EBV lytic infection through the suppression of LMP1-activated phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase kinase/extracellular signal-related protein kinase 1/2 signaling. The present study demonstrated that LMP1 in CNE-LMP1 constructed cells significantly induced the expression of the EBV lytic proteins BZLF1 (P<0.001) and BMRF1 (P<0.05) compared with CNE1 cells. Following treatment with a specific DNAzyme that targets LMP1, significantly reduced protein expression levels of BZLF1 and BMRF1 in EBV-associated epithelial carcinoma CNE1-LMP1 cells (P<0.001 and P<0.01, respectively) and lymphoma B95.8 cells (both P<0.01) were observed. Furthermore, EGCG significantly inhibited the mRNA and protein expression levels of LMP1 (P<0.05) in an apparent dose-dependent manner in CNE1-LMP1 and B95.8 cells. Thus, the present findings indicated that the molecular mechanism underlying EGCG inhibition of EBV lytic infection involves downregulation of LMP1.