Open Access
Long non‑coding RNA HOX transcript antisense RNA promotes expression of 14‑3‑3σ in non‑small cell lung cancer
Author(s) -
Ranran Wang,
Bin Yan,
Li Zheng,
Yiqun Jiang,
Chao Mao,
Xiang Wang,
Xinmin Zhou
Publication year - 2017
Publication title -
experimental and therapeutic medicine
Language(s) - English
Resource type - Journals
eISSN - 1792-1015
pISSN - 1792-0981
DOI - 10.3892/etm.2017.5041
Subject(s) - hotair , biology , gene knockdown , long non coding rna , cancer research , carcinogenesis , lung cancer , hox gene , ectopic expression , oncogene , downregulation and upregulation , cancer , microbiology and biotechnology , cell cycle , gene expression , cell culture , medicine , pathology , gene , genetics
Evidence suggests that both 14-3-3σ and long non-coding RNA HOX transcript antisense RNA (HOTAIR) are involved in the tumorigenesis and progression of lung cancer. In the present study, the potential association between 14-3-3σ and HOTAIR in non-small cell lung cancer (NSCLC) was investigated. In tissue samples collected from 54 patients with NSCLC, expression of HOTAIR and 14-3-3σ was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). After stable ectopic expression of HOTAIR and stable HOTAIR knockdown in PC9 cancer cells, the effect of HOTAIR on levels of mRNA and protein 14-3-3σ expression levels were detected using RT-qPCR and western blotting, respectively. Expression of HOTAIR and 14-3-3σ in NSCLC tissues was significantly higher than in adjacent non-cancerous lung tissue (P<0.05). Correlation analysis also identified a correlation between levels of HOTAIR and 14-3-3σ expression in NSCLC tissues (r=0.725, P=0.0005). In addition, overexpression and knockdown of HOTAIR in the human NSCLC cell line PC9 led to the upregulation and downregulation of 14-3-3σ, respectively, at both the mRNA and protein levels (all P<0.05). To the best of our knowledge, the present study provides the first in vivo and in vitro evidence to suggest that HOTAIR promotes the expression of 14-3-3σ in NSCLC. The potential association between HOTAIR and 14-3-3σ indicates that both biomolecules may be viable targets in anticancer therapy.