
Decreased cathepsin K levels in human atherosclerotic plaques are associated with plaque instability
Author(s) -
Hongguang Zhao,
Xiujiao Qin,
Shuai Wang,
Xuguo Sun,
Bin Dong
Publication year - 2017
Publication title -
experimental and therapeutic medicine
Language(s) - English
Resource type - Journals
eISSN - 1792-1015
pISSN - 1792-0981
DOI - 10.3892/etm.2017.4935
Subject(s) - pathology , cathepsin l , immunohistochemistry , pathogenesis , extracellular matrix , h&e stain , atheroma , fibrous cap , cathepsin b , cathepsin d , chemistry , biology , cathepsin , microbiology and biotechnology , medicine , enzyme , biochemistry
Investigating the determinants and dynamics of atherosclerotic plaque instability is a key area of current cardiovascular research. Extracellular matrix degradation from excessive proteolysis induced by enzymes such as cathepsin K (Cat K) is implicated in the pathogenesis of unstable plaques. The current study assessed the expression of Cat K in human unstable atherosclerotic plaques. Specimens of popliteal arteries with atherosclerotic plaques were classified as stable (<40% lipid core plaque area; n=6) or unstable (≥40% lipid core plaque area; n=14) based on histopathological examinations of hematoxylin and eosin stained sections. The expression of Cat K and cystatin C (Cys C) were assessed by immunohistochemical examination and levels of Cat K mRNA were detected by semi-quantitative reverse transcriptase polymerase chain reaction. Morphological changes including a larger lipid core, endothelial proliferation with foam cells and destruction of internal elastic lamina were observed in unstable atherosclerotic plaques. In unstable plaques, the expression of Cat K protein and mRNA was upregulated, whereas Cys C protein expression was downregulated. The interplay between Cat K and Cys C may underlie the progression of plaques from stable to unstable and the current study indicated that Cat K and Cys C are potential targets for preventing and treating vulnerable atherosclerotic plaque ruptures.