z-logo
open-access-imgOpen Access
Downregulation of activin‑signaling gene expression in passaged normal human dermal fibroblasts
Author(s) -
Young Il Kim,
ChanYang Lee,
Min Kyung Shin
Publication year - 2019
Publication title -
biomedical reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.607
H-Index - 25
eISSN - 2049-9442
pISSN - 2049-9434
DOI - 10.3892/br.2019.1258
Subject(s) - follistatin , activin type 2 receptors , acvr2b , smad , biology , activin receptor , transforming growth factor , signal transduction , downregulation and upregulation , messenger rna , smad2 protein , phosphorylation , endocrinology , medicine , oncogene , tgf beta signaling pathway , microbiology and biotechnology , gene , cell cycle , genetics
Activins are members of the transforming growth factor-β (TGF-β) superfamily and play important roles in proliferation, differentiation, and apoptosis of various target cells. We investigated changes of activin, activin receptor (ActR), and Smad-signaling gene expression with increasing passage number in normal human dermal fibroblasts. The expression of mRNA and protein was measured by reverse transcription-quantitative polymerase chain reaction and immunoblot analysis from passage numbers 5 to 15. Activin A and follistatin transcript levels increased with increasing passage number. ActR types IA, IB, IIA and IIB mRNA levels decreased at high passage number. The levels of Smad2, 3 and 4 protein decreased with increasing passage number, which also attenuated phosphorylation of Smad2 and 3 protein expression. Smad7 was enhanced with increasing passage number. These results suggest that expression of activin-signaling in aging normal human dermal fibroblasts increases activin A and follistatin, whereas ActR-Smad signaling is decreased.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom