z-logo
open-access-imgOpen Access
The Validity of Carotid Doppler Peak Velocity and Inferior Vena Cava Collapsibility Index in Identifying the Fluid Responders in Mechanically Ventilated Septic Shock Patients
Author(s) -
Mohamed Soliman,
Ahmed M. Magdi,
Moataz Fatthy,
Rania M. El-Sherif
Publication year - 2022
Publication title -
open access macedonian journal of medical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.288
H-Index - 17
ISSN - 1857-9655
DOI - 10.3889/oamjms.2022.8375
Subject(s) - medicine , inferior vena cava , septic shock , anesthesia , cardiac index , shock (circulatory) , central venous pressure , cardiac output , cardiology , mechanical ventilation , cardiac cycle , hemodynamics , blood pressure , heart rate , sepsis
Measures of carotid artery flow or inferior vena cava diameter were recently shown to predict fluid responsiveness. Both are relatively superficial large vessels which can provide straightforward ultrasound evaluation & high-qualityimages.Methods: Our study is a prospective observational study on 30 mechanically ventilated septic shock patients in ICUto assess the fluid responsivenessby measuring carotid Doppler peak velocity&respiratory variation in inferior vena cava diameter against the increase in the cardiac index by echocardiographic calculations as a reference. All patients were given a fluid bolus 7 ml/ Kg crystalloid solution within 30 minutes, static and dynamic indices which include CVP, MAP, pulse pressure, difference between diameter of IVC during inspiration and expiration (ΔIVC- d) & carotid Doppler peak velocity in a single respiratory cycle (ΔCDPV) were measured before (T0) & after (T1). Vasoactive drugs infusion rate and ventilation settings did not changed during follow up. Patients were categorized either fluid responders “R” or non-responders “NR” according to an increase in cardiac output “CO” (increase in CO > 15 %.Results: Comparing responders & Non responders group we found a significant difference in Cardiac output measures,MAP & Δ CDPV pre & post fluid boluses as (5.26±4.42 L/min Vs. 10.62±5.73 L/min, 69.48±9.70 mmHg Vs. 84.90±10.36 mmHg&24.43±11.87%Vs33.22±11.00%) respectively with P-value (0.007, 0.05&0.01) respectively, on the other side , ΔD-IVC & Δ CVP pre & post fluid boluses didn’t show any statistical difference as (11.91±9.41 % Vs. 13.51±9.56 %, 5.86±5.22 cmH2O Vs 7.22±4.82 cmH2O) with P-value (0.87&0.68)respectively.Δ CDPV increase in response to increased intravascular volume in R group showed sensitivity 81%, specificity 66.7%. APACHE II, SOFA day 0,5 didn’t showed any difference between the R & NR group (16.05±3.23 Vs 18.44±3.81, 11.48±2.82Vs12.11±2.80& 12.95±3.68Vs12.56±3.97) respectively with P-value (0.164,  0.625 & 0.79) respectively. Conclusion: ΔCDPV was a more precise & even easier assessment tool with better sensitivity and specificity for evaluation of fluid responsiveness than the ΔD-IVC in patients with septic shock upon mechanicalventilation. Also, ΔCDPV has a high correlation with SVI increasing parameters assessed by echocardiography after fluid boluses. On the other hand and in comparison, CVP showed low accuracy in predicting fluid responsiveness.    

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here