
The Effect of Gembili Starch (Dioscorea esculenta) and Eubacterium rectal Supplementation on Skeletal Muscle Peroxisome Proliferator-Activated Receptor γ Coactivator 1α (Pgc-1α) Expression in Diabetic Mice Models
Author(s) -
Tri Rima Setyawati,
Rio Jati Kusuma,
Harry Freitag Luglio Muhammad,
Neni Oktiyani,
Sunarti Sunarti,
Rosmala Nur,
Syaiful Hendra
Publication year - 2021
Publication title -
open access macedonian journal of medical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.288
H-Index - 17
ISSN - 1857-9655
DOI - 10.3889/oamjms.2021.7415
Subject(s) - medicine , endocrinology , diabetes mellitus , starch , coactivator , peroxisome proliferator activated receptor , carbohydrate metabolism , resistant starch , type 2 diabetes mellitus , skeletal muscle , receptor , biology , biochemistry , gene , transcription factor
BACKGROUND: Gembili or Dioscorea esculenta is a local food that is produced by several areas in Indonesia. Few studies have reported its health benefits for diabetes mellitus but a little is understood about its mechanism of action. PGC-1α is a transcriptional coactivator for genes that involved in energy metabolism and increased expression of this gene has previously been associated with improved insulin sensitivity.AIM: The objective of this study was to investigate the effect of Gembili starch and Gembili starch with butirogenic bacteria Eubacterium rectal on PGC-1α expression in skeletal muscle of diabetic mice.MATERIALS AND METHODS: Three months old male diabetic Wistar mice were divided into groups based on dietary supplement: Gembili starch only; Gembili starch with E. rectal; and E. rectal only. Positive (diabetic mice) and negative (non-diabetic) control groups were used in this study. After 4 weeks of supplementation, mice were sacrificed and muscle tissue was taken from musculus vastus latissimus. Plasma blood glucose was measured before and after intervention. PGC-1α expression was measured with immunohistochemistry and quantified by dividing cells that produce PGC-1α with total cells.RESULTS: Plasma blood glucose was reduced after invention in group that received Gembili starch only (p < 0.001); Gembili starch with E. rectal (p < 0.001); and E. rectal only (p < 0.001). The protein expression of PGC-1α in diabetic mice receiving Gembili starch only was significantly higher compared to control (p < 0.05).CONCLUSION: This study shown that Gembili starch supplementation was able to improve glucose control in diabetic mice and this effect was obtained perhaps through PGC-1α activation. Further study is needed to investigate the effect of Gembili starch supplementation on fat metabolism.