
Purple Sweet Potato Phytochemicals: Potential Chemo-preventive and Anticancer Activities
Author(s) -
Mochamad Rizki Budiman,
Hesti Lina Wiraswati,
Andri Rezano
Publication year - 2021
Publication title -
open access macedonian journal of medical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.288
H-Index - 17
ISSN - 1857-9655
DOI - 10.3889/oamjms.2021.6784
Subject(s) - medicine , cancer , cancer cell , kinase , cancer research , signal transduction , apoptosis , pi3k/akt/mtor pathway , colorectal cancer , biochemistry , biology
BACKGROUND: Purple sweet potato (PSP; Ipomoea batatas (L.) lam.) is a perennial plant from the morning glory family Convolvulaceae. This plant contains many functional compounds and a high concentration of anthocyanins and phenols, in contrast to other sweet potato plants of different colors. Both in vitro and in vivo studies have shown that parts of PSP have interesting functions in the setting of cancer.AIM: This article is a collective review of the potential properties of PSP in cancer, with an emphasis on its effects in breast, bladder, colorectal, liver, gastric, and cervical cancers.METHODS: Major English research databases, including PubMed, Web of Science, Scopus, and Google Scholar, were searched for studies evaluating the activity of PSP against cancer published ended in Mei 2020.RESULTS: The search yielded 72 articles relevant to this topic. Of note, PSP phytochemicals such anthocyanins and caffeoylquinic acid derivatives act as an antioxidant that scavenges free radicals and regulates the Keap1-Nrf2 signaling pathway, acts as an antimutagenic agent, and has anti-inflammatory activity by inhibiting activation of mitogen-activated protein kinases and the NF-κB pathway as a Chemo-preventive mechanism. Furthermore, PSP can promote apoptosis, cell cycle arrest, inhibit proliferation, cell growth inhibition, and inhibit cancer progression that actions collectively sum as anticancer activity in many cancer cells. The primary target-signaling pathway that is interfered by PSP is the phosphatidylinositol-3-kinase/protein kinase B pathway, which is a very common mutated pathway in cancer cells that regulates many physiologic processes inside the cells.CONCLUSION: As a promising medicinal plant that may serve as a Chemo-preventive and anticancer agent, further research on PSP is required to determine its clinical uses and potential as a food supplement.