
Exploring the Capability of Indonesia Natural Medicine Secondary Metabolite as Potential Inhibitors of SARS-CoV-2 Proteins to Prevent Virulence of COVID-19: In silico and Bioinformatic Approach
Author(s) -
Bambang Cahyono,
Nur Dina Amalina,
Meiny Suzery,
Damar Nur Wahyu Bima
Publication year - 2021
Publication title -
open access macedonian journal of medical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.288
H-Index - 17
ISSN - 1857-9655
DOI - 10.3889/oamjms.2021.5945
Subject(s) - in silico , docking (animal) , medicine , computational biology , pharmacology , covid-19 , gene , biology , disease , biochemistry , infectious disease (medical specialty) , pathology , nursing
BACKGROUND: SARS-CoV-2 was causing COVID-19 disease resulting in many deaths and being a significant concern in the world today. There is an emergent need to search for possible medications for COVID-19 treatment. The key point to halt SARS-CoV-2 infection through inhibition of the virus-receptor interaction and stimulates the immune system. Utilization of the bioinformatic and in silico molecular docking a number of available medications might be proven to be effective in inhibiting SARS-CoV-2 main drug targets including the SARS-CoV2 spike glycoprotein, the 3CL protease SARS-CoV-2 active target, PD-ACE2, 2019-nCoV PLpro, and NF-kβ.AIM: This present study was conducted to identify the potential target and molecular mechanism of the major compound on Alpinia galanga extract and Citrus sinensis (L.) extract in circumventing COVID-19 using a bioinformatics approach and in silico molecular docking.RESULTS: Direct protein target of all secondary metabolite and the gene list from PubMed “Severe acute respiratory syndrome coronavirus 2” generated 2 genes (CCL2 and VEGFA) as potential therapeutics target genes (PTTG). The molecular docking was conducted by the Protein-Ligand Ant System (PLANTS) software. The results show that hesperidin, naringenin, and galangin have lower docking score for all five-protein target receptor compared with chloroquine and remdesivir. The lower docking score suggests a high affinity to bind the protein. Moreover, these compounds have a strong affinity in their inhibitory capacity for viral infection.CONCLUSION: In general, this study’s findings show that the compound of Alpinia galanga extract dan Citrus sinensis (L.) extract exhibit the best potential as an inhibitor to the development of the SARS-CoV-2 and inhibited cytokine storm through inactivation NF-kβ _pathway.