z-logo
open-access-imgOpen Access
A Cross-laboratory Comparison Study of Titan Haze Analogs: Surface Energy
Author(s) -
Jialin Li,
Xinting Yu,
Ella Sciamma-O’Brien,
Chao He,
Joshua A. Sebree,
Farid Salama,
Sarah M. Hörst,
Xi Zhang
Publication year - 2022
Publication title -
the planetary science journal
Language(s) - English
Resource type - Journals
ISSN - 2632-3338
DOI - 10.3847/psj/ac3d27
Subject(s) - titan (rocket family) , haze , methane , atmosphere of titan , astrobiology , chemistry , environmental chemistry , chemical physics , physics , organic chemistry
In Titan’s nitrogen-methane atmosphere, photochemistry leads to the production of complex organic particles, forming Titan’s thick haze layers. Laboratory-produced aerosol analogs, or “tholins,” are produced in a number of laboratories; however, most previous studies have investigated analogs produced by only one laboratory rather than a systematic, comparative analysis. In this study, we performed a comparative study of an important material property, the surface energy, of seven tholin samples produced in three independent laboratories under a broad range of experimental conditions, and we explored their commonalities and differences. All seven tholin samples are found to have high surface energies and are therefore highly cohesive. Thus, if the surface sediments on Titan are similar to tholins, future missions such as Dragonfly will likely encounter sticky sediments. We also identified a commonality between all the tholin samples: a high dispersive (nonpolar) surface energy component of at least 30 mJ m −2 . This common property could be shared by the actual haze particles on Titan as well. Given that the most abundant species interacting with the haze on Titan (methane, ethane, and nitrogen) are nonpolar in nature, the dispersive surface energy component of the haze particles could be a determinant factor in condensate−haze and haze−lake liquid interactions on Titan. With this common trait of tholin samples, we confirmed the findings of a previous study by Yu et al. that haze particles are likely good cloud condensation nuclei for methane and ethane clouds and would likely be completely wetted by the hydrocarbon lakes on Titan.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here