HST UV Observations of Asteroid (16) Psyche
Author(s) -
Tracy M. Becker,
Nathaniel J. Cunningham,
Philippa Molyneux,
Lorenz Roth,
Lori M. Feaga,
K. D. Retherford,
Zoe A. Landsman,
Emma Peavler,
L. T. ElkinsTanton,
J. E. Walhund
Publication year - 2020
Publication title -
the planetary science journal
Language(s) - English
Resource type - Journals
ISSN - 2632-3338
DOI - 10.3847/psj/abb67e
Subject(s) - asteroid , wavelength , physics , psyche , astrophysics , visible spectrum , absorption band , spectral line , ultraviolet , absorption (acoustics) , space weathering , spectrograph , astronomy , optics , psychology , psychoanalysis
The Main Belt Asteroid (16) Psyche is the target object of the NASA Discovery Mission Psyche. We observed the asteroid at ultraviolet (UV) wavelengths (170–310 nm) using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope during two separate observations. We report that the spectrum is very red in the UV, with a blue upturn shortward of ∼200 nm. We find an absorption feature at 250 nm and a weaker absorption feature at 275 nm that may be attributed to a metal-oxide charge transfer band. We find that the red-sloped, relatively featureless spectrum of (16) Psyche is best matched with the reflectance spectrum of pure iron; however, our intimate mixture models show that small grains of iron may dominate the reflectance spectrum even if iron only comprises up to 10% of the material on the surface. We also stress that there is a limited database of reflectances for planetary surface analogs at UV wavelengths for comparison with the spectrum of (16) Psyche. The mid- and far-UV spectra (<240 nm) are markedly different for each of the four asteroids observed at these wavelengths so far, including ones in the same spectral class, indicating that UV observations of asteroids could be used to better understand differences in the composition and processing of the surfaces of these small bodies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom