Dust Resurgence in Protoplanetary Disks Due to Planetesimal–Planet Interactions
Author(s) -
Lia Marta Bernabó,
D. Turrini,
L. Testi,
F. Marzari,
D. Polychroni
Publication year - 2022
Publication title -
the astrophysical journal letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.639
H-Index - 201
eISSN - 2041-8213
pISSN - 2041-8205
DOI - 10.3847/2041-8213/ac574e
Subject(s) - planetesimal , planet , circumstellar disk , physics , astrobiology , circumstellar dust , stars , myr , astrophysics , astronomy , chemistry , biochemistry , genome , gene
Observational data on the dust content of circumstellar disks show that the median dust content in disks around pre-main-sequence stars in nearby star-forming regions seems to increase from ∼1 to ∼2 Myr and then decline with time. This behavior challenges the models where the small dust grains steadily decline by accumulating into larger bodies and drifting inwards on a short timescale (≤1 Myr). In this Letter we explore the possibility to reconcile this discrepancy in the framework of a model where the early formation of planets dynamically stirs the nearby planetesimals and causes high-energy impacts between them, resulting in the production of second-generation dust. We show that the observed dust evolution can be naturally explained by this process within a suite of representative disk-planet architectures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom