
INVESTIGATING FACTORS AFFECTING ROAD FREIGHT OVERLOADING THROUGH THE INTEGRATED USE OF BLR AND CART: A CASE STUDY IN CHINA
Author(s) -
Yikai Chen,
Kai Wang,
Yunlong Zhang,
Renjia Luo,
Shujun Yu,
Qin Shi,
Wenting Hu
Publication year - 2020
Publication title -
transport
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 31
eISSN - 1648-4142
pISSN - 1648-3480
DOI - 10.3846/transport.2020.12635
Subject(s) - truck , transport engineering , vehicle miles of travel , logistic regression , china , cart , computer science , engineering , automotive engineering , geography , mechanical engineering , archaeology , machine learning
Overloading of road freight vehicles accelerates road damage, creates unfair competition in the transport market, and increases safety risk. There is a dearth of research on the mining of data of highway Freight Weight (FW), and this paper therefore aims to discover factors affecting road freight overloading based on highway FW data, with a view of developing strategies to mitigate such occurrences. A comprehensive sampling survey of road freight transportation was conducted in Anhui Province (China). Vehicle Characteristics (VC), Operation Mode (OM), and transportation information from a total of 3248 trucks were collected. In order to take advantage of the strengths associated with both statistical modelling techniques and non-parametric methods, a Classification And Regression Tree (CART) technique was integrated with Binary Logistic Regression (BLR) to reveal the factors affecting road freight overloading. The classification efficacy test shows that the BLR–CART method outperformed the BLR method in term of accuracy. It is also revealed that the factors affecting overloading of freight vehicles are the Type of Transportation (ToT), Rated Load (RL), OM, FW during the investigation period, interaction between RL and FW, and interaction among RL, FW, and Average Haul Distance (AHD). Road transport authorities should pay greater attention to these factors in order to improve efficiency and effectiveness of overloading inspection.