
ENABLING TECHNOLOGIES CHALLENGES OF GREEN INTERNET OF THINGS (IOT) TOWARDS SUSTAINABLE DEVELOPMENT IN THE ERA OF INDUSTRY 4.0
Author(s) -
Lei Liu,
Arunodaya Raj Mishra
Publication year - 2022
Publication title -
technological and economic development of economy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.634
H-Index - 47
eISSN - 2029-4921
pISSN - 2029-4913
DOI - 10.3846/tede.2022.16520
Subject(s) - computer science , internet of things , standardization , analytic hierarchy process , protocol (science) , cloud computing , engineering management , computer security , operations research , engineering , medicine , alternative medicine , pathology , operating system
The extensive adoption of the Internet of Things (IoT) has increased the carbon footprint on a large scale across the globe. To handle this challenge, scholars and policymakers are making efforts to propose novel energy-efficient solutions to provide a desirable environment for green-IoT (G-IoT). Additionally, further research is required to analyze the G-IoT-related challenges to elucidate the difficulties of its implementation for researchers. Moreover, the GIoT requirements have been considered in different network levels, namely software, hardware, architecture, communication. To present a comprehensive framework to identify the challenges of G-IoT, a survey using literature review and expert’s opinion is carried. Total 23 challenges are taken to evaluate and implement G-IoT technologies towards sustainable development achievements (SDA). Consequently, this article aims to rank and evaluate the challenges to implement the G-IoT towards the SDA. An integrated approach is proposed with stepwise weight assessment ratio analysis (SWARA) and additive ratio assessment (ARAS) under Pythagorean fuzzy sets. As a result, an machine-to-machine (M2M) standardization protocol with a weight value of 0.0508 has the first rank, followed by adaptation to natural energy sources with a weight value of 0.0479, information security and privacy protection with a weight value of 0.0469, and internet protocol version-6 (IPv6) for low-end devices with weight 0.0467. To validate the proposed method, sensitivity analysis and comparison using existing methods have been conducted.