
Influence of asphalt visco-elastic properties on flexible pavement performance
Author(s) -
Rita Kleizienė,
Audrius Vaitkus,
Donatas Čygas
Publication year - 2016
Publication title -
the baltic journal of road and bridge engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.259
H-Index - 21
eISSN - 1822-4288
pISSN - 1822-427X
DOI - 10.3846/bjrbe.2016.36
Subject(s) - asphalt , pavement engineering , asphalt pavement , elastic modulus , viscoelasticity , rheology , materials science , dynamic modulus , geotechnical engineering , isotropy , elasticity (physics) , rut , structural engineering , composite material , engineering , dynamic mechanical analysis , physics , quantum mechanics , polymer
Even though every layer of pavement structure is important and affects pavement performance, the asphalt layers visco-elasticity plays significant role. Bitumen properties, as well as asphalt mixture properties, vary depending on temperature and loading conditions. These variations influence entire pavement bearing capacity and has to be evaluated in pavement design. The main challenge is material behaviour description through simple models to incorporate them to pavement design. Generally, pavements are designed using Multilayer Elastic Theory assuming that all materials are elastic, isotropic, and homogenous. This paper presents analysis of two pavement structures response calculated according to three pavement design approaches. The dynamic modulus and phase angle of asphalt mixtures was estimated using Hirsch model after binder complex shear modulus tests. The visco-elastic behaviour was described with rheological Huet-Sayegh model and pavement responses estimation was done using MnLayer and ViscoRoute2 software. The analysis reviled static and dynamic load influence on pavement structure based on elastic and visco-elastic properties of asphalt layers. This allowed optimisation of layer thicknesses and determination of more cost beneficial pavement structure with appropriate performance.