z-logo
open-access-imgOpen Access
Evaluation of the safety performance of turbo roundabouts by means of a potential accident rate model
Author(s) -
Raffaele Mauro,
Marco Cattani,
Marco Guerrieri
Publication year - 2015
Publication title -
the baltic journal of road and bridge engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.259
H-Index - 21
eISSN - 1822-4288
pISSN - 1822-427X
DOI - 10.3846/bjrbe.2015.04
Subject(s) - roundabout , intersection (aeronautics) , crash , transport engineering , turbo , poison control , geometric design , engineering , computer science , automotive engineering , medicine , environmental health , programming language
Turbo roundabouts are a particular road intersection layout, designed to increase the safety of double-lane roundabouts, while maintaining their excellent capacity. The main feature of this new concept of roundabout is the impossibility to move from one lane to another, provided by physical barriers marking the lanes. The paper shows an application to turbo roundabouts of a potential accident rate model, aiming to evaluate their safety improvement. Themodel is based on the concept of potential conflict: each vehicle involved in a general intersection performs a series of maneuvers which potentially imply a crash, according to the actual traffic. The number of accidents related to each critical maneuver is proportional to the number of times this maneuver occurs at the intersection. In order to define the critical maneuvers, and hence the relevant potential conflicts, specific crash typologies for roundabouts are adopted. Traffic volumes are required, to evaluate the expected number of accidents, and also probabilities of accident for every critical maneuver. These ratios were obtained by a model calibration, based on actual accident and traffic data recorded on conventional single and double-lane roundabouts. The model was then used to compare four-leg turbo roundabouts to conventional roundabouts. The comparisons have taken into account only basic differences in layout, such as geometric elements, that also play a role in determining safety performances of a roundabout. The results obtained show that turbo roundabouts significantly decrease the accident rate with respect to conventional roundabouts, by eliminating conflicts between circulating and exiting vehicles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here