
Predicting freeway pavement construction cost using a back-propagation neural network: a case study in Henan, China
Author(s) -
Jie He,
Qi Zhou,
Haiying Wen,
Chihang Zhao,
Mark King
Publication year - 2014
Publication title -
the baltic journal of road and bridge engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.259
H-Index - 21
eISSN - 1822-4288
pISSN - 1822-427X
DOI - 10.3846/bjrbe.2014.09
Subject(s) - artificial neural network , transport engineering , engineering , civil engineering , pavement engineering , computer science , machine learning , geography , cartography , asphalt
The objective of this research was to develop a model to estimate future freeway pavement construction costs in Henan Province, China. A comprehensive set of factors contributing to the cost of freeway pavement construction were included in the model formulation. These factors comprehensively reflect the characteristics of region and topography and altitude variation, the cost of labour, material, and equipment, and time-related variables such as index numbers of labour prices, material prices and equipment prices. An Artificial Neural Network model using the Back-Propagation learning algorithm was developed to estimate the cost of freeway pavement construction. A total of 88 valid freeway cases were obtained from freeway construction projects let by the Henan Transportation Department during the period 1994−2007. Data from a random selection of 81 freeway cases were used to train the Neural Network model and the remaining data were used to test the performance of the Neural Network model. The tested model was used to predict freeway pavement construction costs in 2010 based on predictions of input values. In addition, this paper provides a suggested correction for the prediction of the value for the future freeway pavement construction costs. Since the change in future freeway pavement construction cost is affected by many factors, the predictions obtained by the proposed method, and therefore the model, will need to be tested once actual data are obtained