
INFLUENCE OF CHLORIDES AND SULPHATES ON QUALITY OF BIOLOGICAL WASTEWATER TREATMENT USING ENZYME PREPARATIONS
Author(s) -
Audra Skaisgirienė,
Pertas Vaitiekūnas,
Vytenis Zabukas
Publication year - 2004
Publication title -
journal of environmental engineering and landscape management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.514
H-Index - 28
eISSN - 1822-4199
pISSN - 1648-6897
DOI - 10.3846/16486897.2004.9636825
Subject(s) - sewage treatment , wastewater , chemistry , activated sludge , biochemical oxygen demand , sewage , microorganism , enzyme assay , pulp and paper industry , chemical oxygen demand , environmental chemistry , enzyme , environmental science , environmental engineering , biochemistry , biology , bacteria , engineering , genetics
The biological treatment method is widely used in Lithuania due to its high efficiency, low cost and suitability for treating various types of wastewater. After technological processes various mineral substances, such as chlorides and sulphates, get into water bodies. These substances are not removed from wastewater by the biological treatment method. The purpose of this study is to determine the concentrations of chlorides and sulphates, investigate the influence of enzyme preparations upon quality and energy consumption and assess energy changes in the trophic food chain during biological treatment. To analyse the mineral salt influence of the biooxidation process a series of laboratory tests was carried out: biochemical oxygen consumption (BOD), activated sludge concentration and other indexes. It is found experimentally that a 400 mg/1 concentration of chlorides disarranges the activity of microorganisms, and at a 700 mg/1 concentration active sludge is no longer suitable for biological treatment. Also, we investigated the effect of a ferment preparation “Roebic” on effluence of sewage treatment. In a tank with an enzyme the total amount of energy after treatment increases by 5–30 %. It is determined by calculating the accumulation of energy in an active‐sludge system that an enzyme preparation increases the energy levels of the system.