
SOME TAUBERIAN REMAINDER THEOREMS FOR HOLDER SUMMABILITY
Author(s) -
Ümi̇t Totur,
Muhammet Ali Okur
Publication year - 2015
Publication title -
mathematical modelling and analysis/mathematical modeling and analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.491
H-Index - 25
eISSN - 1648-3510
pISSN - 1392-6292
DOI - 10.3846/13926292.2015.1011719
Subject(s) - remainder , mathematics , modulo , chinese remainder theorem , abelian and tauberian theorems , integer (computer science) , order (exchange) , multiple , pure mathematics , discrete mathematics , arithmetic , computer science , finance , economics , programming language
In this paper, we prove some Tauberian remainder theorems that generalize the results given by Meronen and Tammeraid [Math. Model. Anal., 18(1):97– 102, 2013] for Holder summability method using the notion of the general control modulo of the oscillatory behaviour of nonnegative integer order.