
QUASILINEARIZATION AND MULTIPLE SOLUTIONS OF THE EMDEN‐FOWLER TYPE EQUATION
Author(s) -
Inara Yermachenko,
Felix Sadyrbaev
Publication year - 2005
Publication title -
mathematical modelling and analysis/mathematical modeling and analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.491
H-Index - 25
eISSN - 1648-3510
pISSN - 1392-6292
DOI - 10.3846/13926292.2005.9637269
Subject(s) - mathematics , multiplicity (mathematics) , domain (mathematical analysis) , equivalence (formal languages) , mathematical analysis , combinatorics , pure mathematics
Existence and multiplicity of solutions of the problem x” = ‐q(t) |x|p sign x (i), x(0) = x(1) = 0 (ii) are investigated by reducing equation (i) to a quasi‐linear one so that both equations are equivalent in some domain O. If a solution of corresponding quasi‐linear problem is located in the domain of equivalence O, then this solution solves the original problem also. If this process of quasilinearization is possible for multiple essentially different linear parts, then multiple solutions to the problem (i), (ii) exist.Darbe nagrinejamas taip vadinamas Emdeno‐Faulerio kvazitiesines diferencialines lygties homogeninio kraštinio uždavinio sprendiniu egzistavimas ir daugialypumas. Parodyta, kad šio uždavinio sprendinio daugialypumas priklauso nuo tam tikru būdu gautos kvazilinearizuotos lygties tiesines dalies savybiu.