
NEURAL NETWORK MATERIAL MODELLING/MEDŽIAGŲ NEURONINIŲ TINKLŲ FIZIKINIAI MODELIAI
Author(s) -
Jamshid Ghaboussi,
Xiping Wu,
Gintaris Kaklauskas
Publication year - 1999
Publication title -
journal of civil engineering and management
Language(s) - Lithuanian
Resource type - Journals
SCImago Journal Rank - 0.529
H-Index - 47
eISSN - 1822-3605
pISSN - 1392-3730
DOI - 10.3846/13921525.1999.10531472
Subject(s) - physics , political science , theology , philosophy
Straipsnyje supažindinama su neuroninių tinklų metodo taikymų, kuriant fizikinius medžiagų modelius. Neuroninių tinklų metodas, pagrįstas žmogaus smegenų darbo modeliavimo principais, tik šį dešimtmetį praktiškai pradėtas taikyti įvairiose mokslo srityse. Pirmieji du šio straipsnio autoriai pirmieji pasaulyje pritaikė neuroninių tinklų metodą. fizikiniams modeliams kurti.Neuroninį tinklą sudaro mazgai (neuronai), tarpusavyje sujungti ryšiais. Mazgai yra suskirstyti į grupes, vadinamas sluoksniais: pradinių duomenų ir rezultatų sluoksniai bei tarpiniai sluoksniai (1 pav.). Mazgai charakterizuojami aktyvumu, o ryšiai stiprumu. Mazgo aktyvumas nustatomas kaip į jį ateinančių ryšsių stiprumo ir atitinkamų mazgų aktyvumo sandaugų suma. Ryšių stiprumas, kuris gali turėti tiek teigiamą, tiek neigiamą. skaitinę reikšmę, nustatomas neuroninio tinklo „mokymo” metu. Tinklas dažniausiai „mokomas” pradinių duomenų ir rezultatų pavyzdžiu pagal tam tikras mokymo taisykles. Iš visų žinomų neuroninių tinklų bene plačiausiai taikomas grįžtamasis neuroninis tinklas (backpropagation neural network).Straipsnyje supažindinama su grįžtamuoju neuroniniu tinklu, jo „mokymo” taisyklėmis, dinaminiais mazgų kūrimo principais bei tinklų kūrimo metodologija. Straipsnio pabaigoje pateikiama medžiagų fizikinių modelių kūrimo neuroniniais tinklais metodologija.