
Solving Galbrun's Equation with a Discontinuous galerkin Finite Element Method
Author(s) -
Marcus Maeder,
Andrew Peplow,
Max Meindl,
Steffen Marburg
Publication year - 2019
Publication title -
acta acustica united with acustica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 57
eISSN - 1610-1928
pISSN - 1861-9959
DOI - 10.3813/aaa.919369
Subject(s) - spurious relationship , finite element method , eulerian path , galerkin method , euler equations , mathematics , discontinuous galerkin method , aerodynamics , mathematical analysis , classical mechanics , physics , mechanics , lagrangian , statistics , thermodynamics
Over many years, scientists and engineers have developed a broad variety of mathematical formulations to investigate the propagation and interactions with flow of flow-induced noise in early-stage of product design and development. Beside established theories such as the linearized Euler equations (LEE), the linearized Navier–Stokes equations (LNSE) and the acoustic perturbation equations (APE) which are described in an Eulerian framework, Galbrun utilized a mixed Lagrange–Eulerian framework to reduce the number of unknowns by representing perturbations by means of particle displacement only. Despite the advantages of fewer degrees of freedom and the reduced effort to solve the system equations, a computational approach using standard continuous finite element methods (FEM) suff ers from instabilities called spurious modes that pollute the solution. In this work, the authors employ a discontinuous Galerkin approach to overcome the difficulties related to spurious modes while solving Galbrun's equation in a mixed and pure displacement based formulation. The results achieved with the proposed approach are compared with results from previous attempts to solve Galbrun's equation. The numerical determination of acoustic modes and the identification of vortical modes is discussed. Furthermore, case studies for a lined-duct and an annulus supporting a rotating shear-flow are investigated.