z-logo
open-access-imgOpen Access
Numerical Analysis of Natural Convection Heat Transfer Inside an Inverted T-Shaped Cavity Filled with Nanofluid
Author(s) -
Gopal Sen,
Mohammad Ilias Inam
Publication year - 2021
Publication title -
journal of engineering advancements
Language(s) - English
Resource type - Journals
eISSN - 2708-6437
pISSN - 2708-6429
DOI - 10.38032/jea.2021.04.003
Subject(s) - nusselt number , rayleigh number , natural convection , heat transfer , materials science , enclosure , nanofluid , heat transfer coefficient , film temperature , mechanics , thermodynamics , volume fraction , heat transfer enhancement , reynolds number , composite material , physics , turbulence , telecommunications , computer science
This assessment is centered on the characteristics of natural convection heat transfer of Aluminium Oxide-Air nanofluid inside an inverted T-shaped enclosure with differentially heated sidewalls. The left edges of the enclosed cavity have been treated as a heated wall and are kept at a constant temperature. The right edges are also maintained at a constant temperature but lower than the heated wall. The top and bottom faces of the cavity have been considered adiabatic. The evaluation has been numerically investigated using ANSYS fluent. The effect of different significant parameters like volume fraction of nanoparticles, the shape of the enclosure, and Rayleigh number on the heat transfer characteristics inside an inverted T shape enclosure have been investigated. In this numerical analysis, a series of DNS simulations have been conducted for different Rayleigh numbers in the range of 103 to 106, the volume fraction of particles in the range 0≤ φ ≤0.1, and for the different aspect ratios for the inverted T shape have been conducted. The outcomes of this CFD analysis indicate a remarkable rise in the average heat transfer coefficient with the rising volume fraction of Al2O3 particles in the air. An increase of the average Nusselt number was also observed with the increase of Rayleigh number, but it drops slightly at a higher volume fraction of nanoparticles due to an increase in conductive heat transfer. For Rayleigh numbers ≥ 104, both the average Nusselt number and average heat transfer coefficient decrease up to a certain shape of the cavity aspect ratio. After that cavity aspect ratio, both the parameters value increase. But in the case of Rayleigh number = 103, both of the values decrease with the increase in the cavity aspect ratio.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here