
Numerical Investigation of Liquid–Liquid Mixing in Modified T Mixer with 3D Obstacles
Author(s) -
Readul Mahmud
Publication year - 2021
Publication title -
journal of engineering advancements
Language(s) - English
Resource type - Journals
eISSN - 2708-6437
pISSN - 2708-6429
DOI - 10.38032/jea.2021.02.004
Subject(s) - mixing (physics) , reynolds number , laminar flow , micromixer , mechanics , pressure drop , computational fluid dynamics , materials science , obstacle , channel (broadcasting) , computer science , physics , turbulence , telecommunications , quantum mechanics , political science , law
The fluids inside passive micromixers are laminar in nature and mixing depends primarily on diffusion. Hence mixing efficiency is generally low, and requires a long channel length and longtime compare to active mixers. Various designs of complex channel structures with/without obstacles and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers. This work presents a design of a modified T mixer. To enhance the mixing performance, circular and hexagonal obstacles are introduced inside the modified T mixer. Numerical investigation on mixing and flow characteristics in microchannels is carried out using the computational fluid dynamics (CFD) software ANSYS 15. Mixing in the channels has been analyzed by using Navier–Stokes equations with water-water for a wide range of the Reynolds numbers from 1 to 500. The results show that the modified T mixer with circular obstacles has far better mixing performance than the modified T mixer without obstacles. The reason is that fluids' path length becomes longer due to the presence of obstacles which gives fluids more time to diffuse. For all cases, the modified T mixer with circular obstacle yields the best mixing efficiency (more than 60%) at all examined Reynolds numbers. It is also clear that efficiency increase with axial length. Efficiency can be simply improved by adding extra mixing units to provide adequate mixing. The value of the pressure drop is the lowest for the modified T mixer because there is no obstacle inside the channel. Modified T mixer and modified T mixer with circular obstacle have the lowest and highest mixing cost, respectively. Therefore, the current design of modified T with circular obstacles can act as an effective and simple passive mixing device for various micromixing applications.