z-logo
open-access-imgOpen Access
Ion-exchange properties of solid solutions based on hydrated forms of monovalent metals antimonate-tungstates
Author(s) -
Olga A. Firsova,
E.M. Filonenko,
Yulia A. Lupitskaya,
Hurshid N. Bozorov,
Anatoly V. Butakov
Publication year - 2020
Publication title -
butlerovskie soobŝeniâ
Language(s) - English
Resource type - Journals
ISSN - 2074-0212
DOI - 10.37952/roi-jbc-01/20-62-6-74
Subject(s) - pyrochlore , ionic radius , thermogravimetric analysis , antimony , antimonate , thermal decomposition , orthosilicate , tungstate , inorganic chemistry , crystallography , chemistry , metal , powder diffraction , materials science , phase (matter) , ion , organic chemistry , tetraethyl orthosilicate
The research of tungsten-antimony crystalline acid (TACA) structural transformations in the condition of ion-exchange and thermolysis of its substituted M+, H+-forms (M+ – Li, Na, K, Ag) were conducted. The data of thermogravimetric and qualitative X-ray phase analyses made it possible to conclude that the thermolysis of TACA and its derivatives proceeds in a wide temperature range from 300 to 1150 K being accompanied by the removal of crystalline water molecules with the formation of phases mixture containing complex antimony oxides of the ( -, - Sb2O4) modification and WO3. It was shown that compounds based on hydrated forms of monovalent metal antimonates-tungstates are stable up to 1023 K with a pyrochlore-type structure. For pyrochlore-like phases, a monotonic dependence of unit cell parameter a on ion-exchange degree α and the ionic radius of metals r was revealed indicating the formation of solid solutions Мх(Н3О)1–хWSbO6 nН2О (M+ – Li, Na, K, Ag; 0.0≤х<1.0; 0.0≤n<2.0) with a limited range of solubility from the crystal chemistry point of view. Within the framework of the Fd-3m space group, based on the data of X-ray diffraction analysis (Rietveld method), the structural characteristics of TACA and its substituted M+, H+-forms were refined, and a model for populating the corresponding metal ions by crystallographic positions of the pyrochlore-type structure was proposed. Using a complex of physicochemical methods (thermogravimetric, X-ray diffraction analyses and IR spectroscopy), a correlation between the composition of the obtained compounds, structural disorder, and ion-exchange properties were determined. According to the data of thermogravimetry and IR spectroscopy, it follows that the degree of compounds hydration analyzed depends on the nature of the alkaline ion. This allows to conclude that lithium and sodium ions are located in 16d– positions, dragging neutral water molecules into the structure occupying 8b-positions. In this case, potassium ions can partially occupy both 16d- and 8b-positions of the structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here