
Design and Three-Dimensional Simulation of a Solar Dish-Stirling Engine
Author(s) -
Sherihan Abd El Ghafour,
N. Mikhael,
Mohamed El Ghandour
Publication year - 2021
Publication title -
journal of advanced research in fluid mechanics and thermal sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.247
H-Index - 13
ISSN - 2289-7879
DOI - 10.37934/arfmts.82.1.5176
Subject(s) - stirling engine , mechanical engineering , stirling cycle , aperture (computer memory) , concentrator , parabolic reflector , solar energy , software , nonimaging optics , thermal efficiency , engineering , computer science , optics , electrical engineering , physics , chemistry , organic chemistry , combustion , programming language
Design and three-dimensional simulation of a solar Dish-Stirling (SDS) engine is currently performed. The design starts with the GPU-3 Stirling engine, which is originally built to generate power from the fossil fuel exclusively. The design is conducted through three subsequent phases. Firstly, several parabolic dishes with different rim angles and number of facets are investigated to optimally design the dish concentrator. Secondly, different relative positions of the receiver aperture to the dish focal plane are tested to reach the optimal position. The optical simulation of the solar concentration process is carried out using SolTRACE software. Finally, an optimal design for a cavity receiver that involves a new structure of the heater tubes is performed. The simulation of the engine with the designed receiver is implemented using the commercial CFD code ANSYS FLUENT. Having finished the design, a comprehensive energy analysis of the designed SDS engine is carried out. The results show that a nearly uniform temperature distribution of the heater tubes throughout the cycle is achieved. The overall thermal efficiency of the designed SDS engine is about 31.8 % at a DNI of 1000 W/m2.