Open Access
Increasing WSN Lifetime using Clustering and Fault Tolerance Methods
Author(s) -
Sama Hussam Sabah,
Muayad Sadik Croock
Publication year - 2021
Publication title -
iraqi journal for electrical and electronic engineering/al-maǧallaẗ al-ʻirāqiyyaẗ al-handasaẗ al-kahrabāʼiyyaẗ wa-al-ilikttrūniyyaẗ
Language(s) - English
Resource type - Journals
eISSN - 2078-6069
pISSN - 1814-5892
DOI - 10.37917/ijeee.17.1.11
Subject(s) - fault tolerance , computer science , energy consumption , wireless sensor network , power consumption , cluster analysis , protocol (science) , efficient energy use , embedded system , real time computing , scheduling (production processes) , process (computing) , reliability engineering , distributed computing , power (physics) , computer network , engineering , electrical engineering , medicine , operations management , physics , alternative medicine , pathology , quantum mechanics , operating system , machine learning
Energy consumption problems in wireless sensor networks are an essential aspect of our days where advances have been made in the sizes of sensors and batteries, which are almost very small to be placed in the patient's body for remote monitoring. These sensors have inadequate resources, such as battery power that is difficult to replace or recharge. Therefore, researchers should be concerned with the area of saving and controlling the quantities of energy consumption by these sensors efficiently to keep it as long as possible and increase its lifetime. In this paper energy-efficient and fault-tolerance strategy is proposed by adopting the fault tolerance technique by using the self-checking process and sleep scheduling mechanism for avoiding the faults that may cause an increase in power consumption as well as energy-efficient at the whole network. this is done by improving the LEACH protocol by adding these proposed strategies to it. Simulation results show that the recommended method has higher efficiency than the LEACH protocol in power consumption also can prolong the network lifetime. In addition, it can detect and recover potential errors that consume high energy.