z-logo
open-access-imgOpen Access
Analysis of Scalability and Sensitivity for Chaotic Sine Cosine Algorithms
Author(s) -
Dunia Tahir,
Ramzy S. Ali
Publication year - 2018
Publication title -
iraqi journal for electrical and electronic engineering
Language(s) - English
Resource type - Journals
eISSN - 2078-6069
pISSN - 1814-5892
DOI - 10.37917/ijeee.14.2.6
Subject(s) - sine , chaotic , algorithm , discrete cosine transform , trigonometric functions , mathematics , sensitivity (control systems) , sine and cosine transforms , scalability , computer science , artificial intelligence , mathematical analysis , electronic engineering , geometry , engineering , image (mathematics) , fourier analysis , short time fourier transform , fourier transform , database
Chaotic Sine-Cosine Algorithms (CSCAs) are new metaheuristic optimization algorithms. However, Chaotic Sine-Cosine Algorithm (CSCAs) are able to manipulate the problems in the standard Sine-Cosine Algorithm (SCA) like, slow convergence rate and falling into local solutions. This manipulation is done by changing the random parameters in the standard Sine-Cosine Algorithm (SCA) with the chaotic sequences. To verify the ability of the Chaotic Sine-Cosine Algorithms (CSCAs) for solving problems with large scale problems. The behaviors of the Chaotic Sine-Cosine Algorithms (CSCAs) were studied under different dimensions 10, 30, 100, and 200. The results show the high quality solutions and the superiority of all Chaotic Sine-Cosine Algorithms (CSCAs) on the standard SCA algorithm for all selecting dimensions. Additionally, different initial values of the chaotic maps are used to study the sensitivity of Chaotic Sine-Cosine Algorithms (CSCAs). The sensitivity test reveals that the initial value 0.7 is the best option for all Chaotic Sine-Cosine Algorithms (CSCAs).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom