
DCT Untuk Ekstraksi Fitur Berbasis GLCM Pada Identifikasi Batik Menggunakan K-NN
Author(s) -
Zulfrianto Yusrin Lamasigi
Publication year - 2021
Publication title -
jambura journal of electrical and electronics engineering
Language(s) - English
Resource type - Journals
eISSN - 2715-0887
pISSN - 2654-7813
DOI - 10.37905/jjeee.v3i1.7113
Subject(s) - physics
Batik merupakan kain yang dibuat khusus, batik sendiri terbilang unik karena memiliki motif tertentu yang dibuat berdasarkan unsur budaya dari daerah asal batik itu dibuat. setiap motif dan warna batik berbeda-beda sehingga sulit untuk dikenali asal dari motir batik itu sendiri. penelitian ini bertujuan untuk meningkatkan hasil ektraksi fitur pada identifikasi motif batik. metode yang digunakan dalam penelitian ini adalah Discrete Cosine Transform bertujuan untuk meningkatkan hasil ektraksi fitur Gray Level Co-Occurrence Matrix untuk mendapatkan hasil akurasi identifikasi motif batik yang lebih baik, sedangkan untuk mengetahui nilai kedekatan antara data training dengan data testing citra batik akan menggunakan K-Nearest Neighbour berdasarkan nilai ekstraksi fitur yang diperoleh. dalam eksperimen ini dilakukan 4 kali percobaan berdasarkan sudut 0°, 45°, 90°, dan 135° pada nilai k=1, 3, 5, 7, dan 9. sementara itu, untuk menghitung tingkat akurasi dari klasifikasi KNN akan menggunakan confusion matrix. Dari uji coba yang di lakukan dengan menggunakan jumalah data training sebanyak 602 citra dan data testing 344 citra terhadap semua kelas berdasarkan sudut 0°, 45°, 90°, dan 135° pada nilai k=1, 3, 5, , dan 9 akurasi tertinggi yang diperoleh DCT-GLCM ada pada sudut 135° dengan nilai k=3 sebesar 84,88% dan yang paling rendah ada pada sudut 0° dengan nilai k=7 dan 9 sebesar 41,86%. Sedangkan hasil uji dengan hanya mennggunakan GLCM akurasi tertinggi ada pada sudut 135° dengan nilai k=1 sebesar 77,90% dan yang paling rendah ada pada sudut 90° dengan nilai k=7 sebesar 40,69%. Dari hasil uji coba yang dilakukan menunjukkan bahwah DCT bekerja dengan baik untuk meningkatkan hasil ekstraksi fitur GLCM yang dibuktikan dengan hasil rata-rata akurasi yang diperoleh.Batik is a specially made cloth, batik itself is unique because it has certain motifs that are made based on cultural elements from the area where the batik was made. each batik motif and color is different so it is difficult to identify the origin of the batik motir itself. This study aims to improve the feature extraction results in the identification of batik motifs. The method used in this research is Discrete Cosine Transform, which aims to increase the extraction of the Gray Level Co-Occurrence Matrix feature to obtain better accuracy results for identification of batik motifs, while to determine the closeness value between training data and batik image testing data will use K- Nearest Neighbor based on the feature extraction value obtained. In this experiment, 4 experiments were carried out based on angles of 0 °, 45 °, 90 °, and 135 ° at values of k = 1, 3, 5, 7, and 9. Meanwhile, to calculate the level of accuracy of the KNN classification, confusion matrix will be used. . From the trials carried out using the total training data of 602 images and testing data of 344 images for all classes based on angles of 0 °, 45 °, 90 °, and 135 ° at values of k = 1, 3, 5, and 9 accuracy The highest obtained by DCT-GLCM was at an angle of 135 ° with a value of k = 3 of 84.88% and the lowest was at an angle of 0 ° with values of k = 7 and 9 of 41.86%. While the test results using only GLCM, the highest accuracy is at an angle of 135 ° with a value of k = 1 of 77.90% and the lowest is at an angle of 90 ° with a value of k = 7 of 40.69%. From the results of the trials conducted, it shows that the DCT works well to improve the results of the GLCM feature extraction as evidenced by the average accuracy results obtained.