
Characterization of some finite simple groups by the set of orders of vanishing elements and order
Author(s) -
Soleyman Askary
Publication year - 2021
Publication title -
ukraïnsʹkij matematičnij žurnal
Language(s) - English
Resource type - Journals
ISSN - 1027-3190
DOI - 10.37863/umzh.v73i11.1069
Subject(s) - simple group , conjecture , mathematics , classification of finite simple groups , prime (order theory) , finite group , simple (philosophy) , order (exchange) , element (criminal law) , characterization (materials science) , combinatorics , character (mathematics) , set (abstract data type) , group (periodic table) , pure mathematics , discrete mathematics , group of lie type , group theory , physics , computer science , geometry , law , philosophy , optics , epistemology , quantum mechanics , political science , programming language , finance , economics
UDC 512.5 Характеризацiя деяких скiнченних простих груп множиною порядкiв зникаючих елементiв та порядку Let be a finite group. We say that an element of is a vanishing element if there exists an irreducible complex character of such that . Ghasemabadi, Iranmanesh, Mavadatpour (2015), present the following conjecture: Let be a finite group and a finite nonabelian simple group such that and . Then . We answer in affirmative this conjecture for , where and either or is a prime number and , where and either or is prime.