z-logo
open-access-imgOpen Access
On the theory of integral manifolds for some delayed partial differential equations with nondense domain}
Author(s) -
Ch. Jendoubi
Publication year - 2020
Publication title -
ukraïnsʹkij matematičnij žurnal
Language(s) - English
Resource type - Journals
ISSN - 1027-3190
DOI - 10.37863/umzh.v72i6.6020
Subject(s) - algorithm , materials science , computer science
UDC 517.9Integral manifolds are very useful in studying dynamics of nonlinear evolution equations. In this paper, we consider the nondensely-defined partial differential equation ⅆ u ⅆ t = ( A + B ( t ) ) u ( t ) + f ( t , u t ) , t ∈ R , ( 1 ) where ( A , D ( A ) ) satisfies the Hille – Yosida condition, ( B ( t ) ) t ∈ R is a family of operators in ℒ ( D ( A ) ¯ , X ) satisfying some measurability and boundedness conditions, and the nonlinear forcing term f satisfies ‖ f ( t , ϕ ) - f ( t , ψ ) ‖ ≤ φ ( t ) ‖ ϕ - ψ ‖ , here, φ belongs to some admissible spaces and ϕ , ψ ∈ : = C ( [ - r ,0 ] , X ) . We first present an exponential convergence result between the stable manifold and every mild solution of (1). Then we prove the existence of center-unstable manifolds for such solutions.Our main methods are invoked by the extrapolation theory and the Lyapunov – Perron method based on the admissible functions properties.  

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here