
Bounds for the right spectral radius of quaternionicmatrices
Author(s) -
Istkhar Ali
Publication year - 2020
Publication title -
ukraïnsʹkij matematičnij žurnal
Language(s) - English
Resource type - Journals
ISSN - 1027-3190
DOI - 10.37863/umzh.v72i6.6018
Subject(s) - eigenvalues and eigenvectors , spectral radius , mathematics , ball (mathematics) , matrix (chemical analysis) , pure mathematics , radius , mathematical analysis , computer science , physics , quantum mechanics , materials science , computer security , composite material
UDC 517.5 In this paper we present bounds for the sum of the moduli of right eigenvalues of a quaternionic matrix. As a consequence, we obtain bounds for the right spectral radius of a quaternionic matrix. We also present a minimal ball in 4D spaces which contains all the Gersgorin balls of a quaternionic matrix. As an application, we introduce the estimation for the right ˇ eigenvalues of quaternionic matrices in the minimal ball. Finally, we suggest some numerical examples to illustrate of our results.