z-logo
open-access-imgOpen Access
Asymptotic behavior of solutions to an evolution equation for bidirectional surface waves in a convecting fluid
Author(s) -
H. Mahmoudi,
Amin Esfahani
Publication year - 2020
Publication title -
ukraïnsʹkij matematičnij žurnal
Language(s) - English
Resource type - Journals
ISSN - 1027-3190
DOI - 10.37863/umzh.v72i10.6032
Subject(s) - uniqueness , initial value problem , mathematical analysis , polynomial , surface (topology) , mathematics , cauchy problem , physics , geometry
UDC 517.9We consider the Cauchy problem for an evolution equation modeling bidirectional surface waves in a convecting fluid. We study the existence, uniqueness, and asymptotic properties of global solutions to the initial value problem associated withthis equation in . We obtain some polynomial decay estimates of the energy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here